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Abstract 
This study aims to relate the tug of war between intraday and overnight returns to investors’ 

lottery preference in explaining stock returns. Motivated by the notion that intraday returns are 

more salient to investors than overnight returns, we propose that more salient intraday returns 

contribute more to the overpricing of lottery stocks. To verify this conjecture, we propose two 

lottery proxies, namely maximum intraday return (IMAX) and maximum overnight return 

(OMAX). We empirically show that stocks with higher IMAX significantly underperform those 

with lower IMAX, and that the return predictability associated with OMAX is relatively weak. 

We further confirm the role of the salience theory in characterizing IMAX as a better proxy of 

lottery preference to explain stock returns. 
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1. Introduction 

Recent research has extensively established that investors exhibit preference toward stocks 

with lottery-like payoffs (Harvey and Siddique, 2000; Smith, 2007; Kumar, 2009), which in turn 

leads such stocks to be overpriced and to exhibit subsequent underperformance. Among the vast 

literature, Bali et al. (2011) propose the maximum daily return (denoted as MAX) over the 

previous month as the proxy of lottery preference, and this measure is extensively examined in 

follow-up studies. This line of research has attracted substantial attention from researchers to 

explore possible explanations for the lottery-related anomalies. For example, Barinov (2018) 

hypothesizes that lottery-like stocks are hedges against unexpected increases in market volatility, 

hence this anomaly is attributed to the aggregate volatility risk. An et al. (2020) instead suggest 

that reference-dependent preference explains the lottery anomaly, while Chen et al. (2021) 

propose an explanation based on the local bias. The salience theory of Bordalo et al. (2012, 2013) 

also provides an alternative theoretical framework to characterize that investors’ attention is 

drawn to assets that are salient relative to a benchmark, resulting in the overpricing of assets with 

lottery-like payoffs. 

The main purpose of this study is to provide further understanding of the lottery-related 

anomalies by taking the roles of intraday and overnight returns into account. We are motivated 

by the considerable literature on the patterns of intraday and overnight returns, among which a 

tendency of positive overnight returns followed by negative returns during daytime trading hours 

is well documented.1 Berkman et al. (2012) show that this negative overnight-intraday return 

pattern is driven by retail investors’ buying pressure at the open, causing the stock’s opening 

price to be high relative to its fundamental price. This is also consistent with the argument of Lou 

                                                           
1 See, for example, Miller (1989), Cliff et al. (2008), Branch and Ma (2012), Aboody et al. (2018), and 

Bogousslavsky (2021). 
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et al. (2021) and Akbas et al. (2022) that the tug of war between opposing investor clienteles 

causes the return predictability between intraday and overnight returns. 

The negative overnight-intraday return pattern provides us the main motivation to establish 

the possible linkage between the intraday component of extreme daily returns and investors’ 

lottery preference. We propose that if investors pay attention to the salient overnight news and 

trade the stock at the open, they are less incline to overweight the probability of this salient state 

if a negative reversal during the trading hours occurs. As a result, stocks with extreme overnight 

returns are less prone to overvaluation and low future returns. Hence, excluding overnight 

returns from the MAX measure of Bali et al. (2011), i.e., considering the intraday component 

only, might be an effective way to identify lottery-like payoffs. 

Existing studies have established that investors’ speculative trading due to their lottery or 

gambling preference is closely related to trading volume (Boyer and Vorkink, 2014; Blauet al., 

2016; Byun and Kim, 2016). While the open-to-close return is accompanied by trading volumes 

and the close-to-open return is accompanied by zero or very little volume due to thin trading 

(Barardehi et al., 2021), speculative trading induced by investors’ lottery preference is more 

prevalent during daytime trading hours. In addition, extreme returns occurring during daytime 

trading hours should be more salient to investors than extreme returns occurring overnight 

because the former attracts more investors’ attention through trading activities. Thus, Bordalo et 

al.’s (2012, 2013) salience theory provides a plausible support for our argument of using the 

intraday returns to measure lottery-like payoffs. 

To explore our conjecture, we rely on Bali et al.’s (2011) maximum daily return (denoted as 

MAX) over the previous month to conceptualize investors’ lottery preference, with a particular 

focus on the roles of intraday and overnight returns. By decomposing the intraday and overnight 
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fractions of MAX, we find that the intraday and overnight components on average account for 

73.75% and 25.77% of a stock’s MAX value, respectively, confirming that the intraday return at 

least plays a critical role to account for a stock’s MAX. 

The preliminary decomposition results motivate us to propose two measures, namely 

maximum intraday return (denoted as IMAX) and maximum overnight return (denoted as 

OMAX), that are defined as the maximum daily open-to-close and close-to-open returns within a 

month. It should be noted that the occurrences of IMAX and OMAX are unnecessarily to be 

consistent with the occurrence of MAX, hence they can be treated as potential determinants of 

stock returns that are distinct to MAX. We hypothesize that investors’ attention during daytime 

trading hours causes stocks with higher values of IMAX to be overpriced and thus have lower 

subsequent returns than those with lower values of IMAX. We also expect that the negative 

relation between OMAX and future stock returns is weaker due to investors’ relatively limited 

attention. 

Over the sample period from July 1992 to December 2022, we obtain average return premia 

of 1.500% and 1.161% under equal and value weights for the IMAX strategy, which involves 

buying the lowest IMAX decile of stocks and short selling the highest IMAX decile of stocks. 

The corresponding equally- and value-weighted return premia for the OMAX strategy are 

0.799% and 0.447%, respectively. This finding is consistent with our conjecture that IMAX 

better accounts for future stock returns than OMAX. As a comparison, the MAX strategy 

generates average premia of 1.418% and 0.903% with equal and value weights, which are close 

to but lower than the IMAX premia. 

While IMAX and MAX both negatively relate to future stock returns when they are 

considered alone, it is important to examine whether their explanatory ability is subsumed by 
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each other. Applying an approach of the Fama-MacBeth (1974) cross-sectional regressions, we 

show that MAX, IMAX, and OMAX all significantly and negatively correlate with future stock 

returns when considered alone, consistent with the evidence from the portfolio analyses. 

Nevertheless, only IMAX retains its significance when it is contrasted with MAX or OMAX, or 

both. The significance of MAX coefficient disappears once IMAX is included in the regressions. 

Our evidence indicates that IMAX dominates MAX and OMAX in explaining future stock 

returns, highlighting the importance of IMAX as a more effective proxy to capture lottery-like 

payoffs of stocks. 

While the IMAX measure is motivated by Bordalo et al.’s (2012, 2013) salience theory, it is 

important to examine the explanation based on the salience theory for the return predictability 

generated by IMAX. The salience theory posits that assets with more salient upsides (downsides) 

are more likely to be overvalued (undervalued) and hence have lower (higher) subsequent return 

performance. We hypothesize that if the return predictability of IMAX is induced because 

investors’ attention is drawn to the extreme returns occurring during daytime trading hours, a 

stock’s salient payoffs in an upward trend would further enhance the overvaluation, leading to 

severer subsequent underperformance. Hence, we expect the IMAX premium to be stronger 

among stocks with higher magnitude of salient upsides. 

We follow Cosemans and Frehen (2021) to construct the empirical measure of the salience 

theory (denoted as ST) to concretize Bordalo et al.’s (2012, 2013) theoretical framework. We 

allocate individual stocks into three groups according to their values of the ST measure, and we 

perform the Fama-MacBeth (1974) cross-sectional regressions separately for the three ST groups. 

We show that the coefficient of IMAX is insignificant for the low ST group, and that the 

significance of the negative IMAX coefficient increases with the ST measure. This finding 
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confirms our hypothesis that the negative relation between IMAX and stock returns is 

strengthened when a stock experienced more salient and upside payoffs in the past. We also 

show that the coefficients of MAX and OMAX do not significantly vary across the ST groups, 

thus confirming that the salience theory accounts for the IMAX premium but not the MAX and 

OMAX premia. 

Our main argument that IMAX better characterizes lottery-like payoffs is built on Bordalo 

et al.’s (2012, 2013) assumption that investors’ attention is drawn to the most salient attributes 

that investors tend to overweight in their decision making. A recent study by Lou et al. (2019) 

instead claims that two distinct clienteles tend to dominate the overnight and daytime trading 

sessions, in turn leading to a daily “tug of war” and hence inducing return predictability. 

Motivated by this notion, Akbas et al. (2022) propose an intensity of daily tug of war to describe 

daytime arbitrageurs’ overcorrection to the overnight information. They show that a more intense 

daily tug of war between opposing investor clienteles could result in return reversals. To rule out 

the possibility that our results are induced by this overcorrection explanation, we follow Akbas et 

al. (2022) to construct two measures, namely abnormal positive daytime reversal (ABPR) and 

abnormal negative daytime reversal (ABNR). We apply the Fama-MacBeth (1974) regressions to 

show that neither ABPR nor ABNR could account for the return predictability of IMAX. Thus 

our findings are unlikely to be the result of daytime arbitrageurs’ overcorrection. 

The next research question of our study is to understand why Bali et al.’s (2011) MAX 

measure accounts for the cross-sectional variations of stock returns. Motivated by our hypothesis 

that lottery-like payoffs occurring during daytime trading hours are more salient to investors, we 

propose that stocks whose occurrence of MAX is accompanied by a higher fraction of intraday 

return are prone to severer overvaluation, in turn causing lower future returns. As a result, the 
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MAX premium should be more pronounced among stocks whose MAX consists of a higher 

fraction of intraday return. We apply the Fama-MacBeth (1974) regressions to confirm that the 

negative relation between MAX and stock return is stronger among stocks with higher fractions 

of intraday returns to constitute their MAX values. Furthermore, the significantly negative 

coefficient of IMAX remains unchanged when the interaction effect between the intraday 

fraction and MAX is considered. This finding confirms that IMAX and MAX are two distinct 

phenomena to account for future stock returns, hence highlighting the uniqueness of IMAX to 

proxy for investors’ lottery preference. 

Our study contributes to the literature on lottery-related anomalies by highlighting the 

unique role of salient intraday returns in measuring lottery-like payoffs of stocks. The proposed 

measure of IMAX is motivated and supported by the salience theory, thus providing a theoretical 

support for the advantage of IMAX over MAX. We also contribute to the literature on the tug of 

war between intraday and overnight returns by discriminating investors’ perception of salient 

intraday returns from arbitrageurs’ overcorrection due to investor heterogeneity. We show that 

isolating overnight returns from intraday returns could be an effective way to understand how 

investors form their evaluation of lottery-like payoffs. This finding is unrelated to Akbas et al.’s 

(2022) evidence of the relation between intense tug of war and future stock returns, suggesting 

that investors’ lottery preference and the heterogeneity between distinct clienteles seem to be 

independent phenomena. 

The remaining of this study proceeds as follows. Section 2 provides the literature review 

and hypothesis development. In Section 3, we describe the variable constructions and data used 

in this study. Section 4 presents the empirical evidence of the IMAX premium and tests of 
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potential explanations, as well as the impact of the intraday fraction of return on the MAX 

premium. The last section concludes. 

 

2. Literature review and hypotheses development 

The literature uncovers substantial evidence that investors prefer lottery-like assets that are 

featured by the relatively small probability of large payoffs. Garrett and Sobel (1999) show that 

lottery players are risk averse but favor positive skewness of returns. Harvey and Siddique (2000) 

and Smith (2007) both provide supportive evidence for the pricing ability of skewness. Mitton 

and Vorkink (2007) develop a theoretical model with heterogeneous skewness preferences to 

obtain an equilibrium in which idiosyncratic skewness is priced. Kumar (2009) characterizes 

lottery-type stocks as those having low price, high idiosyncratic volatility, and high idiosyncratic 

skewness. Bali et al. (2011) further propose MAX as a strong predictor of future stock returns, 

and they further show that the negative relation between MAX and stock returns is not explained 

by skewness measures. 

Follow-up studies provide several explanations for the lottery-related anomalies, with 

particular focuses on the role of investors’ behavior. Barinov (2018) shows that investors prefer 

stocks with lottery-like payoffs because such stocks are hedges against unexpected increases in 

market volatility. An et al. (2020) propose that the return of lottery-related anomalies dependents 

on investors’ embedded capital gains. They obtain significantly stronger underperformance for 

lottery-like stocks with large capital losses in the past. Chen et al. (2021) instead focus on the 

internet search to develop the gambling sentiment, and they show that this sentiment index is 

positively related to investors’ demand for lottery-like stocks. 
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Our study is motivated by Bordalo et al. (2012, 2013), who develop the salience theory to 

characterize the overvaluation of assets with lottery-like payoffs. Their model indicates that 

investors’ attention is drawn to assets that are salient relative to a benchmark, thus resulting in 

overvaluation that is followed by lower returns. While the open-to-close return is accompanied 

by trading volumes and the close-to-open return is accompanied by zero or very little volume 

due to thin trading (Barardehi et al., 2021), it is intuitive that extreme returns occurring during 

daytime trading hours are more salient and draw more attention from investors than extreme 

returns occurring overnight. 

Our study is also related to the vast literature on the patterns of intraday and overnight 

returns. Miller (1989), Cliff et al. (2008), Branch and Ma (2012), Aboody et al. (2018), and 

Bogousslavsky (2021) all show that the positive overnight returns of individual stocks tend to be 

followed by negative returns during trading hours of the subsequent trading day. Berkman et al. 

(2012) show that this negative relation between overnight and intraday returns is concentrated 

among stocks that retail investors pay more attention at the open. The buying pressure of retail 

investors at the open causes the opening prices to be high relative to its fundamental prices. As a 

result, stocks with extremely high overnight returns are more prone to subsequent price 

corrections during daytime trading hours, making them less likely be become a lottery target to 

retail investors. 

Our study further links to the ongoing debate on the tug of war between intraday and 

overnight returns. Lou et al. (2021) initiate this line of research by linking investor heterogeneity 

to the continuation and reversal patterns of the intraday and overnight components of monthly 

returns. They obtain strong continuation patterns in intraday and overnight returns and a 

cross-period reversal effect between overnight and daytime periods. Hendershott et al. (2020) 



 9 

show that overnight returns are positively related to beta while intraday returns are negatively 

related to beta, causing the overall poor performance of the capital asset pricing model (CAPM). 

Akbas et al. (2022) propose a measure of daytime reversals based on the intensity of daily tug of 

war between opposing investor clienteles, and they obtain significant return predictability for this 

measure. The aforementioned studies all highlight and verify the differences in the nature of 

intraday and overnight returns and their impacts on future stock returns. 

Bogousslavsky (2021) proposes that holding positions overnight is riskier to institutional 

investors because lending fees are typically charged only on positions held overnight and margin 

requirements are higher overnight. The overnight risk thus incentivizes arbitrageurs to trade on 

mispricing to reduce their positions before the end of the day. Confirming this conjecture, he 

shows that mispricing anomalies perform well during trading hours but perform poorly at the end 

of the day and overnight. This finding indicates that mispricing exists primarily in intraday 

returns but not overnight returns, implying the possibility that investors’ lottery preference is 

formed based on intraday returns rather than on overnight returns. 

The above discussions lead us to propose that lottery-like payoffs occurring during trading 

hours should be more salient than lottery-like payoffs occurring overnight. Our central prediction 

is that the lottery premium should be more pronounced when it is constructed using lottery-like 

intraday returns and is less significant when lottery-like overnight returns is considered. 

We propose two measures, namely maximum intraday return (denoted as IMAX) and 

maximum overnight return (denoted as OMAX). The former is defined as the maximum 

open-to-close return within a month and the latter is defined as the maximum close-to-open 

return within a month. We hypothesize that stocks with higher values of IMAX are more prone 

to overpricing and thus have lower subsequent returns than those with lower values of IMAX. 
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For OMAX, we expect its relation with future stock returns is weaker. Thus, a strategy of a long 

position on low OMAX stocks and a short position on high OMAX stocks is expected to 

generate insignificant premium. Accordingly, we propose the following hypotheses: 

Hypothesis 1: Stocks with higher IMAX generate significantly lower returns than those with 

lower IMAX. 

Hypothesis 2: The relation between OMAX and stock returns is relatively weak. 

It should be noted that lottery stocks identified by IMAX or OMAX could be distinct from 

those identified by MAX. Thus, the return predictability associated with IMAX and OMAX 

might be independent to the MAX anomaly. The second purpose of this study is to examine 

whether the intraday component of MAX accounts for the MAX premium. To this end, we 

calculate the fraction of intraday return to daily return on the day of MAX occurrence. We 

expect that the overpricing of high MAX stocks is concentrated among stocks with the highest 

fractions of intraday return at the occurrence of MAX, leading to the existence of the MAX 

effect. We thus propose the following hypothesis: 

Hypothesis 3: The MAX effect is stronger among stocks whose MAX values comprises higher 

fractions of intraday returns. 

 

3. Construction of variables and data 

3.1. Variable definitions 

Following most studies in the literature (Bali et al., 2017; Barinov, 2018; Cheon and Lee, 

2018), our main variables are initiated by the concept of Bali et al.’s (2011) MAX measure. For a 

given month t, MAX is defined as MAX{Ri,d}, where Ri,d is stock i’s return on day d within 

month t. To consider the lottery measures based on intraday and overnight returns, we follow 
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Lou et al. (2019) by defining the intraday return of stock i on day d as , , , 1,I C O

i d i d i dR P P   where 

,

C

i dP  is the closing price of stock i on day d and ,

O

i dP  is the open price of stock i on day d. We 

next define the overnight return of stock i on day d as , , ,(1 ) (1 ) 1,O I

i d i d i dR R R     where ,i dR  

is stock i’s daily return calculated using closing prices between days d and d–1, i.e., 

, , , 1 1.C C

i d i d i dR P P    The maximum intraday return (IMAX) and maximum overnight return 

(OMAX), are defined as ,MAX{ }I

i dR  and ,MAX{ }O

i dR , respectively. In this study, IMAX and 

OMAX are the main variables associated with the tests of Hypotheses 4.1 and 4.2. 

To test Hypothesis 4.3, we propose the fraction of intraday return to daily return on the day 

of MAX occurrence, denoted as FRAC, to capture the impact of intraday return on the relation 

between MAX and stock returns. In particular, FRAC is computed as , MAX ,MAX{ },I

i d i dR R  in 

which , MAX

I

i dR   is stock i’s intraday return on the day of the MAX occurrence. A higher value of 

FRAC signifies that the stock’s MAX is largely dominated by its intraday return. A lower value 

of FRAC, instead, signifies that the stock’s MAX is largely dominated by its overnight return. 

We also follow the literature to consider several pervasive firm characteristics as the control 

variables, including firm size (SIZE) and book-to-market (BM) ratio of Fama and French (1992), 

gross profitability (GP) of Novy-Marx (2013), asset growth (AG) of Cooper et al. (2008), 

intermediate-term past return (PR12) of Jegadeesh and Titman (1993), short-term past return 

(REV) of Jegadeesh (1990) and Lo and MacKinlay (1990), illiquidity (ILLIQ) of Amihud (2002), 

and idiosyncratic volatility (IVOL) of Ang et al. (2006). 

From each July of year y to June of year y+1, SIZE is defined as a stock’s market 

capitalization at the end of June year y. BM is a stock’s book value of equity at the end of fiscal 

year end y–1 divided by its market value of equity at the end of December in year y–1. GP is 
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defined as revenues minus cost of goods sold, scaled by total assets at the end of fiscal year end 

y–1. AG is the growth rate in total assets from year y−2 to year y−1. PR12 is the cumulative 

return from month t–12 to month t–2, while REV is a stock’s monthly return in month t–1. 

ILLIQ is the daily absolute return divided by daily dollar trading volume, averaged across all 

trading days in month t–1. Finally, IVOL is estimated as the standard deviation of residuals from 

the following regression: 

 , , ,MKT SMB HML

i d i i d i d i d i dR MKT SMB HML                             (1) 

where MKTd, SMBd, and HMLd are factor realizations of Fama and French’s (1993) three-factor 

model on day d. IVOL is calculated as , in which ,i d s are obtained from Equation 

(1). We follow Ang et al. (2006, 2009) and most follow-up studies such as Fu (2009), Bali et al. 

(2011), Stambaugh et al. (2015), Hou and Loh (2016), and Bogousslavsky (2021) by using daily 

return data within month t–1 for the estimation. 

 

3.2. Data description 

Our sample consists of all U.S. common stocks with share codes of 10 and 11 that are listed 

on NYSE, AMEX, and Nasdaq. The sample period spans from July 1992 to December 2022. Our 

sample starts in July 1992 because daily opening prices are available from the Center for 

Research in Security Prices (CRSP) database since then. We obtain return data from the CRSP 

database, while the accounting data are retrieved from the Compustat database. We exclude 

financial and utility firms from the sample, and we require firms with stock prices above $5 at 

the end of the previous month to mitigate the illiquidity and thin-traded problems. 
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We consider several risk-based factor models to obtain abnormal returns. We obtain the 

data on Fama and French’s (1993, 2015) three and five factors from Kenneth French’s website.2 

We also adopt two sets of six-factor models by augmenting the momentum factor and the 

aggregate liquidity factor of Pastor and Stambaugh (2003) into Fama and French’s (2015) 

five-factor model. The momentum factor is also obtained from Kenneth French’s website, while 

the aggregate liquidity factor is obtained from Robert F. Stambaugh’s website.3 Finally, we 

adopt two sets of q-factor models of Hou et al. (2015) and Hou et al. (2021), namely the Q4 and 

Q5 models. We obtain the data on Q4 and Q5 models from Lu Zhang’s website.4 

Panel A of Table 1 provides summary statistics of the three lottery proxies, MAX, IMAX, 

and OMAX. For each firm-month observation, we first identify each stock’s MAX in month t−1. 

We compute the daily, intraday, and overnight returns on the trading day of MAX occurrence, 

and we obtain the means, medians, and standard deviations of the three variables for each month. 

We next calculate the time-series averages of these cross-sectional statistics. Over our sample 

period, the average MAX value is 6.582%, with a median of 4.987% and a standard deviation of 

6.985%. The average (median) MAX comprises an intraday component of 4.854% (3.755%) and 

an overnight component of 1.696% (0.743%), indicating that MAX is mainly attributed to the 

intraday component. 

[Insert Table 1 here] 

We next observe each stock’s IMAX in month t−1, and we obtain summary statistics in the 

same way. On the trading day of the IMAX occurrence, the average and median values of IMAX 

values (i.e., intraday returns) are 5.711% and 4.500%, respectively. The average and median 

daily returns on the trading day of IMAX occurrence are 5.360% and 4.110%, resulting in the 

                                                           
2 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
3 See http://finance.wharton.upenn.edu/~stambaug/. 
4 See http://global-q.org/index.html#/. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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average and median values of -0.370% and -0.037% for the overnight component. This 

observation suggests that IMAX usually occurs following a negative overnight return that is 

close to zero. It should also be noted that the average and median daily returns at the IMAX 

occurrence are slightly lower than the average and median daily returns at the MAX occurrence, 

indicating that MAX and IMAX might occur on different trading days. 

We next turn our focus to the occurrence of OMAX in month t−1. We observe average and 

median OMAX values (i.e., overnight returns) of 3.490% and 2.275%, remarkably lower than 

the corresponding values of MAX and IMAX. This finding partially confirms our conjecture that 

the magnitude of OMAX is less salient to investors than the magnitude of IMAX. In addition, on 

the day of OMAX occurrence, the average and median intraday returns are -0.487% and -0.210%, 

respectively. Overall, the lack of continuation between overnight and intraday returns not only 

confirms that IMAX and OMAX are unrelated, but is also consistent with the extent evidence on 

the tug of war between opposing investor clienteles as documented by Lou et al. (2021) and 

Akbas et al. (2022). 

We also report the time-series averages of cross-sectional correlations between the three 

lottery proxies in Panel B. The highest correlation exists between MAX and IMAX, which is 

0.767 on average. The average correlation between MAX and OMAX is 0.645, and the lowest 

average correlation of 0.354 exists between IMAX and OMAX. These observations indicate that 

the three lottery proxies are positively correlated, but that the relation between IMAX and 

OMAX is relatively weak. 

Next, we focus on the summary statistics of deciles formed on MAX, as presented in Panel 

C. For each month t, we allocate individual stocks into deciles according to their values of MAX 

in month t−1. The average MAX values ranges from 1.614% to 19.885% from the lowest to 
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highest MAX deciles. We also notice that the intraday and overnight components of MAX also 

increase monotonically from the lowest to highest MAX deciles. For the highest MAX decile, 

the intraday and overnight components on average account for 69% and 30% of MAX, with 

corresponding average values of 13.229% and 6.375%, respectively. We also calculate the 

fraction of the occurrence of MAX that overlaps the occurrence of IMAX (OMAX), i.e., a 

stock’s MAX and IMAX (OMAX) occur on the same trading day. We show that 71% of stocks 

allocated in the highest MAX decile belong to highest IMAX decile on the same day. For the 

lowest MAX decile, only 41% of MAX stocks overlap IMAX stocks. The overlapping fraction 

between MAX and OMAX is remarkably lower, with 38% and 20% of MAX stocks overlapping 

OMAX stocks for the lowest and highest MAX deciles, respectively. 

 

4. Empirical analyses 

4.1. Portfolio analyses 

We first examine whether the three lottery proxies are effective in explaining future stock 

returns. For each month t, we sort individual stocks into deciles according to their values of 

MAX, IMAX, or OMAX identified in month t−1. For each decile portfolio, we calculate equally- 

and value-weighted returns in month t. We define the premium of the lottery anomaly as the 

difference in returns between the lowest and highest deciles. If the proposed measure captures 

investors’ lottery preference, the return premium associated with this proxy should be 

significantly positive. 

In Table 2, we report the average returns of decile portfolios and the premia for the three 

lottery proxies. The MAX strategy generates average premia of 1.418% and 0.903% per month 

under equal and value weights, respectively. The average premia of the IMAX strategy are 
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higher than those of the MAX strategy, with equally- and value-weighted returns of 1.500% and 

1.161%, respectively. The raw returns of MAX and IMAX strategies are all significant at the 5% 

significance level, regardless of adoption of the weighting scheme. Among the three strategies, 

the OMAX strategy has the worst performance of 0.799% and 0.447% under equal and value 

weights, and the value-weighted return premium is insignificant with a t-statistic of 1.26. 

[Insert Table 2 here] 

We also obtain abnormal returns for the three lottery strategies by regressing the raw return 

premia between long and short positions on each factor model, and we obtain the intercept as the 

abnormal return. We find that the abnormal premia of the IMAX are consistently positive and 

significant regardless of adoption of the factor model and the weighting scheme. For the MAX 

strategy, the abnormal premia are all significantly positive for the equally-weighted portfolios. 

They are mostly significant and positive for the value-weighted portfolios, with one exception 

when the Q5 model is used as the risk adjustment. Finally, we find that the OMAX strategy 

constructed using either equal or value weights fails to generate significantly positive abnormal 

premia when Q4 and Q5 models are used as risk adjustments. For value-weighted portfolios, the 

OMAX strategy has marginally significant and positive abnormal premium only when Fama and 

French’s (2015) five-factor model or the liquidity-augmented six-factor model is used to adjust 

for risk exposure. 

Overall, the results from Table 2 are in support of Hypothesis 1 that stocks with higher 

IMAX generate significantly lower returns than those with lower IMAX, thus confirming the 

return predictability of IMAX. This finding implies the possibility that investors emphasize on 

intraday returns when searching for possible targets exhibiting lottery features. Out results also 

confirm Hypothesis 2 that the relation between OMAX and future stock returns is relatively 
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weak, suggesting a lower possibility that investors rely on overnight returns to form their lottery 

preference. 

 

4.2. Cross-sectional regressions 

In addition to portfolio-based analyses, we also adopt an approach of the Fama-MacBeth 

(1973) cross-sectional regressions, which enables us to simultaneously test Hypotheses 1 and 2, 

expressing in the following form: 

, 1, , 1 2, , 1 3, , 1 , , , 1 ,

1

,
J

i t t t i t t i t t i t j t i j t i t

j

R MAX IMAX OMAX CV        



               (2) 

where Ri,t is stock i’s return in month t; MAXi,t–1 , IMAXi,t–1, and OMAXi,t–1 are defined as in 

Section 3.1; CVi,j,t is the jth control variable as defined as in Section 3.1. Once we obtain the 

coefficient estimates from Equation (2) for each month t, we calculate and test the time-series 

averages of the coefficients from the regressions based on t-statistics adjusted by Newey and 

West’s (1987) robust standard errors. According to Hypotheses 1, the average coefficient of 

2,t  is expected to be significantly negative, while the prediction of Hypotheses 2 suggests that 

the average coefficient of 3,t  is insignificant. 

In Panel A of Table 3, we present the estimation results of Equation (2) without the 

inclusion of control variables. In Models (1) to (3), we perform univariate regressions by 

including each of the three lottery proxies in the regressions. The results indicate that when 

considered alone, the average coefficients on MAX, IMAX, and OMAX are all significantly 

negative. We also note that the t-statistics of the average coefficients on MAX, IMAX, and 

OMAX are -4.28, -4.97, and -2.81, respectively, indicating that MAX and IMAX has stronger 

return predictability than OMAX. Overall, the estimation results of univariate regressions are 

consistent with the findings obtained from the portfolio-based analyses shown in Table 2. 
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[Insert Table 3 here] 

In Models (4) to (7), we provide several combinations to include part or all of the three 

proxies in Equation (2). When MAX and IMAX are included simultaneously in Model (4), we 

find that the average coefficient on IMAX remains significantly negative with a t-statistic of 

-5.31, while the average coefficient on MAX becomes insignificant (t-statistic = -0.94). This 

evidence indicates that the MAX effect seems to be subsumed by the IMAX effect. We also 

show in Model (5) that the MAX effect is stronger than the OMAX effect, as the average 

coefficient on MAX is significantly negative while the that on OMAX is significantly positive. 

Hence, the MAX effect subsumes the OMAX effect. Next, unsurprisingly, we show in Model (6) 

that the IMAX effect subsumes the OMAX effect as only the coefficient on IMAX is negative 

and significant (t-statistic = -5.34). Finally, we include all lottery proxies in Mode (7), and we 

show that the coefficient on IMAX is significantly negative, while those on MAX and OMAX 

are negative but insignificant. Overall, the results from Panel A of Table 3 suggest that IMAX 

plays a dominant role in explaining future stock returns among the three potential proxies of 

lottery preference. 

We next include the control variables in Equation (2), and we present the estimation results 

in Panel B of Table 3. Consistent with the results in Panel A, we find that IMAX is the only 

variable that consistently and significantly explain future stock returns with a negative sign. The 

coefficients on MAX and OMAX, however, become positive when the control variables are 

included. Among the control variables, the average coefficients on BM and GP are significantly 

positive, suggesting that the value and profitability effects are robust when the lottery effect is 

explored. The coefficients on AG, REV, and IVOL are all significantly negative in all model 

specifications, suggesting the presence of investment, short-term reversal, and idiosyncratic risk 
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effects in our analyses. More importantly, the negative relation between IMAX and future stock 

returns are not eliminated by these effects, again confirming our prediction that intraday returns 

play an important role in capturing investors’ lottery preference. 

 

4.3. The explanation based on the salience theory 

In this study, the idea of proposing IMAX to capture lottery-like payoffs is motivated by 

Bordalo et al.’s (2012, 2013) salience theory, thus it is important to examine whether test the 

salience explanation for the IMAX premium. We hypothesize that the dominating role of IMAX 

in characterizing lottery-like payoffs is built on Bordalo et al.’s (2012, 2013) assumption that 

investors’ attention is drawn to the most salient attributes that investors tend to overweight in 

their decision making. Hence, the IMAX effect is expected to be stronger among stocks whose 

payoffs are more salient to investors. 

The salience theory is initiated by Bordalo et al. (2012, 2013), who develop a theoretical 

framework to characterize investors’ attention that is drawn to stocks having salient upsides 

(downsides) relative to their benchmarks. Cosemans and Frehen (2021) further develop the 

empirical construction of salience payoffs, denoted as ST, and they show that ST exhibits 

stronger explanatory power with a negative sign for future stock returns. In this study, we mainly 

follow Cosemans and Frehen’s (2021) approach to construct ST and apply this measure to 

explain the IMAX premium. 

The construction of the ST measure proceeds in the following way. First, because the 

salience of a stock’s payoff on day d (denoted as ri,d) depends on its distance from the benchmark, 

the salience function of the daily payoff is given as: 
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where dR  is the average return of the market on day d. We follow Cosemans and Frehen (2021) 

by using equal weights across all common stocks to calculate the average market return as the 

benchmark. We also follow Cosemans and Frehen (2021) by setting  = 0.1 based on Bordalo et 

al.’s (2012) calibration to match the experimental evidence on the long-shot lotteries. 

Next, we sort each stock’s daily payoff Ri,d within the previous month, and then assign 

ranks ki,d, ranging from 1 for the most salient to D for the least salient, in which D is the number 

of trading days in the previous month. Each payoff Ri,d may occur with an equal probability d , 

i.e., 1/ .d d   We next define the salience weight as: 

,

, '
,

''
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i d

i d
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                                                     (4) 

where the parameter   captures the degree to which salience distorts decision weights and 

proxies for the decision-maker’s cognitive ability. We again follow Cosemans and Frehen (2021) 

by setting  = 0.7 based on Bordalo et al.’s (2012) calibration. 

Once we obtain ,i d , we define the ST measure as , 1 , ,,i t i d i dST Cov R      for each 

individual stock i, which is estimated using daily observations in month t–1. By its construction, 

a higher value of the ST measure signifies more salient upsides in the stock’s past returns 

distributions, while a lower value of the ST measure signifies more salient downsides in its past 

returns distributions. 

To examine whether the salience theory explains the IMAX effect, for each moth t we 

partition the sample into three subgroups according to each stock’s value of ST computed using 

daily return data in month t−1. Within each ST subgroup, we perform the cross-sectional 
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regression of Equation (2) for each month t, and we obtain the average coefficients in the time 

series separately for each ST subgroup. If the salience theory explains the IMAX effect, the 

coefficient on IMAX should be significantly negative in the high ST subgroup and should be 

insignificant in the low ST subgroup. 

We confirm our prediction based on the results from Table 4, which presents the average 

coefficients from Equation (2) for each ST subgroup. The average coefficients on IMAX are 

-0.040, -0.072, and -0.069 with corresponding t-statistics of -1.43, -3.14, and -3.39 for low, 

medium, and high ST subgroups, respectively. The lack of significance for the IMAX coefficient 

in the low ST subgroup indicates that past salient downsides mitigates the overpricing of stocks 

with higher IMAX values. The higher significance in the t-statistic of the IMAX coefficient for 

the high ST subgroup signifies a higher tendency of overpricing for stocks with higher past 

salient upsides and higher IMAX values. Thus, we confirm that the salience theory well 

differentiates the IMAX effect in the cross-section. 

[Insert Table 4 here] 

We also show in Table 4 that the MAX and OMAX effects do not appear in any ST 

subgroup, suggesting that the salience theory does not induce MAX or OMAX effects when the 

IMAX effect is controlled. This finding also highlights the unique role of IMAX in predicting 

future stock returns that is related to the salience theory. 

 

4.4. The explanation based on the daytime reversals 

Lou et al. (2019) initiate a daily tug of war between intraday and overnight returns by 

claiming that two distinct clienteles tend to dominate the overnight and daytime trading sessions. 

As a result, return predictability is induced for intraday and overnight returns. The daily tug of 
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war motivates Akbas et al. (2022) to propose a measure to capture the intensity of daily tug of 

war, which describes daytime arbitrageurs’ overcorrection to the overnight information. They 

show that a more intense daily tug of war between opposing investor clienteles results in return 

reversals. To rule out the possibility that our results are induced by this overcorrection 

explanation, we follow Akbas et al. (2022) to construct two measures, namely abnormal positive 

daytime reversal (ABPR) and abnormal negative daytime reversal (ABNR). Based on the two 

measures, we examine whether the overcorrection explanation is useful to account for the return 

predictability of IMAX. 

We first follow Akbas et al. (2022) by defining a trading day as positive daytime reversal if 

a negative 
O

i ,dR  is followed by a positive 
I

i ,dR . Analogously, a trading day is defined as negative 

daytime reversal if a positive 
O

i ,dR  is followed by a negative 
I

i ,dR . For each month t, we 

calculate the ratio of trading days with positive (negative) daytime reversals to the number of 

trading days in the month, which Akbas et al. (2022) denote as PRi,t (NRi,t). Conceptually, a 

higher value of PRi,t or NRi,t signifies a higher level of intensity in a daily tug of war for stock i 

during month t. Akbas et al. (2022) next define the abnormal frequency of positive daytime 

reversals, ABPRi,t, as the ratio of PRi,t to the average PRi,t over the past 12 months. A similar 

procedure is applied for the abnormal frequency of negative daytime reversals, ABNRi,t. 

We propose that if the underperformance of high IMAX stocks is due to daytime 

arbitrageurs’ overcorrection to the negative overnight information, the IMAX premium should be 

higher among stocks with higher values of ABPRi,t than those with lower values of ABPRi,t. 

Although ABPRi,t is more straightforward to account for the negative relation between IMAX 

and stock returns, we also apply ABNRi,t, which is shown to better account for future stock 

returns by Akbas et al. (2022), as a further examination to provide a robustness check. While we 
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propose IMAX as a better proxy of lottery-like payoffs, we expect that the IMAX premium 

cannot be explained by daytime arbitrageurs’ overcorrection. That is, both ABPRi,t and ABNRi,t, 

should not explain our results. 

To verify our conjecture, we again apply the approach used in Section 4.3. In particular, for 

each moth t we partition the sample into three subgroups according to each stock’s value of 

ABPR (or ABNR) computed using daily return data in month t−1. Within each ABPR (or ABNR) 

subgroup, we perform the cross-sectional regression of Equation (2) for each month t, and we 

obtain the average coefficients in the time series separately for each ABPR (or ABNR) subgroup. 

Table 5 provides the estimation results. 

[Insert Table 5 here] 

We find that the average coefficients on IMAX are significantly negative for all ABPR 

subgroups, with average IMAX coefficients of -0.107, -0.048, and -0.094 with t-statistics of 

-3.63, -1.88, and -4.47 for low to high ABPR subgroups. The same evidence is obtained when 

ABNR is used for the analyses. Specifically, the average IMAX coefficients are -0.066, -0.081, 

and -0.095 with t-statistics of -2.83, -3.80, and -3.57 for low to high ABNR subgroups. Thus, we 

confirm that the negative relation between IMAX and future stock returns is not induced by 

daytime arbitrageurs’ overcorrection. 

 

4.5. Robustness checks based on multiple-length of MAX 

So far, our analyses are implemented based on the proxies constructed using single-day 

extreme returns. Bali et al. (2011) show that averaging the 5 highest daily returns within the 

precious month can generate a higher lottery premium than using the single-day MAX. Hence, it 

is worthwhile to extend our analyses to the multiple-day measures. To this end, we construct 
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three measures, namely MAX(5), IMAX(5), and OMAX(5), by averaging the 5 highest daily, 

intraday, and overnight returns within month t−1. We compare their relative explanatory power 

for future stock returns by replacing the single-day proxies with the 5-day proxies in Equation 

(2). 

We report the estimation results in Table 6, with control variables excluded in Panel A and 

control variables included in Panel B. Again, we show that the average coefficients on MAX(5), 

IMAX(5), and OMAX(5) are all significantly negative when considered alone. In a horse race of 

comparing the explanatory power of the three proxies, we show that MAX(5) and IMAX(5) both 

exhibit strong predictability for future stock returns in various combinations of explanatory 

variables without including control variables. The explanatory power of MAX(5), however, 

becomes weaker or insignificant when control variables are included. Nevertheless, the 

explanatory power of IMAX(5) remains strong and robust when control variables are included. 

Overall, the results from Table 6 confirms that the superior return predictability of IMAX over 

MAX and OMAX is robust to the multiple-day measures. 

[Insert Table 6 here] 

We next examine the explanations based on salience theory and daytime arbitrageurs’ 

overcorrection for the return predictability of the multiple-day measures. In Panel A of Table 7, 

we report the average coefficients on MAX(5), IMAX(5), and OMAX(5) separately for low, 

medium, and high ST subgroups. Consistent with the results from Table 4, we obtain an 

insignificant average coefficient on IMAX(5) for the low ST subgroup and significantly negative 

IMAX(5) coefficients for medium and high ST subgroups. Among the three ST subgroups, the 

high ST subgroup has the largest t-statistic in absolute value for the IMAX(5) coefficient than 
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the remaining two ST subgroups. Thus, the support for the salience theory in explaining the 

IMAX effect is robust to the multiple-day measures. 

[Insert Table 7 here] 

We next sort individual stocks into three subgroups by the values of ABPR and ABNR, 

with the estimation results for the three subgroups reported in Panels B and C of Table 7, 

respectively. Again, we show that the IMAX(5) coefficients are pervasively negative with 

significance for all ABPR and ABNR subgroups, confirming our expectation that the lack of 

support for daytime arbitrageurs’ overcorrection in explaining the IMAX effect is unaffected by 

the length of days to compute the lottery proxies. 

 

4.6. The impact of intraday returns on the MAX effect 

The final task of this study is to test Hypothesis 3, which predicts that the MAX effect is 

stronger among stocks whose MAX values comprises higher fractions of intraday returns. To 

explore this possibility, we adopt the approach of cross-sectional regressions, expressed in the 

following form: 

, 1, , 1 2, , 1 3, , 1 4, , 1i t t t i t t i t t i t t i tR MAX IMAX OMAX FRAC                 

5, , 1 , 1 , , , 1 ,

1

,
J

t i t i t j t i j t i t

j

MAX FRAC CV    



                                (5) 

where FRACi,t–1 is the fraction of stock i’s intraday return to daily return on the day of MAX 

occurrence in month t–1, as defined in Section 3.1. According to Hypothesis 3, we predict that 

the negative return predictability of MAX is stronger among stocks having higher values of 

FRAC. That is, we expect that the average coefficient of 5,t  from Equation (5) is significantly 

negative. 
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We examine several model specifications of Equation (5) to examine our prediction, with 

the estimation results provided in Table 8. In Model (1), we include MAXi,t–1, FRACi,t–1, and their 

interaction term. We show that the average coefficient on the interaction term is -0.081 with a 

t-statistic of -4.64, thus confirming our prediction. We next include two more independent 

variables, IMAXi,t–1 and OMAXi,t–1, as presented in Model (2). We again obtain a significantly 

negative coefficient on MAXi,t–1×FRACi,t–1, which is -0.088 with a t-statistic of -3.26. It is 

noteworthy that the average coefficient on IMAXi,t–1 is significantly negative at -0.060 with a 

t-statistic of -2.84, indicating that the IMAX effect and intraday return’s enhancing effect on the 

MAX premium seem to coexist. 

We further include control variables in the regressions, as presented in Models (3) and (4), 

and we still obtain significantly negative coefficient on MAXi,t–1×FRACi,t–1. That is, the impact of 

intraday returns on the MAX effect is robust to the inclusion of control variables. In Model (4), 

we again demonstrate the coexistence of significantly negative coefficients on IMAXi,t–1 and 

MAXi,t–1×FRACi,t–1, confirming that the inclusion of control variables does not subsume the 

IMAX effect and intraday return’s enhancing effect on the MAX premium. 

[Insert Table 8 here] 

We next test the explanation based on the salience theory for intraday return’s enhancing 

effect on the MAX premium. We again sort individual stocks into three subgroups based on the 

ST values and perform the cross-sectional regressions of Equation (5) separately for the three 

subgroups. As presented in Panel A of Table 9, we obtain significantly negative coefficient 5  

only for the high ST subgroup. In particular, the average coefficients on MAXi,t–1×FRACi,t–1 are 

-0.064 (t-statistic = -1.52), -0.060 (t-statistic = -1.33), and -0.051 (t-statistic = -2.80) for low, 

medium, and high ST subgroups. Hence, the salience theory is also applied to explain the 
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phenomenon of higher MAX effect among stocks whose MAX values comprise higher fractions 

of intraday returns. 

[Insert Table 9 here] 

Finally, we explore the explanation based on daytime arbitrageurs’ overcorrection for the 

findings obtained in Table 8. We form three subgroups based on the ABPR or ABNR values, and 

we report the estimation results of Equation (5) separately for the three ABPR and ABNR 

subgroups in Panels B and C, respectively. We show that the average coefficients on 

MAXi,t–1×FRACi,t–1 are consistently negative and significant for all ABPR subgroups. For ABNR 

subgroups, we obtain significantly negative coefficients on MAXi,t–1×FRACi,t–1 for low and high 

ABNR subgroups. That is, either ABPR or ABNR effect fails to effectively differentiate the 

enhancing effect of intraday return on the MAX premium. 

 

5. Conclusions 

In this study, we aim to provide further understanding of the lottery-related anomalies by 

taking the roles of intraday and overnight returns into account. We are motivated by the negative 

overnight-intraday return pattern to establish the possible linkage between the intraday 

component of extreme daily returns and investors’ lottery preference. We propose that if 

investors pay attention to the salient overnight news and trade the stock at the open, they are less 

incline to overweight the probability of this salient state if a negative reversal during the trading 

hours occurs. As a result, stocks with extreme overnight returns are less prone to overvaluation 

and low future returns. In addition, while the open-to-close return is accompanied by trading 

volumes and the close-to-open return is accompanied by zero or very little volume due to thin 

trading as suggested by Barardehi et al. (2021), speculative trading induced by investors’ lottery 
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preference is more prevalent during daytime trading hours. These arguments motivate us to 

propose an alternative proxy of investors’ lottery preference based on extreme intraday returns. 

Accordingly, we propose two measures, IMAX and OMAX, that are defined as the 

maximum daily open-to-close and close-to-open returns within a month. We hypothesize that 

IMAX better characterizes lottery-like payoffs and hence exhibits stronger explanatory power for 

future stock returns than MAX and OMAX. We apply empirical methodologies based on 

portfolio analyses and cross-sectional regressions, and we obtain consistent evidence in support 

of our hypothesis. We also confirm the unique role of the salience theory in explain the IMAX 

effect and the failure of the explanation based on daytime arbitrageurs’ overcorrection. These 

findings are helpful to understand the channel behind the negative relation between IMAX and 

future stock returns. 
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Table 1: Summary statistics of lottery measures 

This table presents the summary statistics of main variables associated with lottery proxies for the sample period 

from July 1992 to December 2022. For each month t, MAX is defined as MAX{Ri,d}, where Ri,d is stock i’s return 

on day d within month t. IMAX and OMAX are defined as ,MAX{ }I

i dR  and ,MAX{ }O

i dR , where ,

I

i dR  and ,

O

i dR  

are stock i’s intraday and overnight returns on day d within month t. We first report the statistics of the three proxies 

in Panel A. For each firm-month observation, we first obtain each stock’s MAX (IMAX or OMAX) in month t−1. 

We compute the daily, intraday, and overnight returns on the trading day of MAX (IMAX or OMAX) occurrence, 

and we obtain the means, medians, and standard deviations of the three variables for each month. We next calculate 

the time-series averages of the cross-sectional statistics. In Panel B, we report the time-series averages of the 

cross-sectional correlations between the three lottery proxies. In Panel C, we report the summary statistics of deciles 

formed on MAX. For each month t, we allocate individual stocks into deciles according to their values of MAX in 

month t−1. We next report the time-series averages of cross-sectional means for various variables within each MAX 

decile, including MAX, the intraday and overnight components of MAX, the percentages of intraday and overnight 

components to MAX, and two dummy variables indicating whether the day of MAX occurrence coincides the day of 

IMAX or OMAX in the same month. 

 

MAX 

 

IMAX 

 

OMAX 

 

Mean Median Std. Dev. 

 

Mean Median Std. Dev. 

 

Mean Median Std. Dev. 

Panel A: Statistics of daily, intraday, and overnight returns on days identifying MAX measures 

Daily return 6.582 4.987 6.985 

 

5.360 4.110 6.399 

 

2.945 1.896 6.006 

Intraday return 4.854 3.755 5.465 

 

5.771 4.500 5.489 

 

-0.487 -0.210 4.178 

Overnight return 1.696 0.743 4.587 

 

-0.370 -0.037 3.225 

 

3.490 2.275 4.858 

 

MAX IMAX OMAX 

Panel B: Correlations between MAX measures 

MAX 1 0.767 0.645 

IMAX 

 

1 0.354 

OMAX 

  

1 

 

Low 2 3 4 5 6 7 8 9 High 

Panel C: Statistics of variables for MAX deciles 

MAX 1.614 2.627 3.292 3.935 4.629 5.439 6.453 7.858 10.183 19.885 

Intraday return 1.189 2.019 2.542 3.038 3.583 4.208 4.978 6.035 7.725 13.229 

Overnight return 0.426 0.607 0.747 0.892 1.039 1.219 1.458 1.795 2.405 6.375 

% of intraday return 72% 77% 78% 78% 78% 78% 77% 77% 76% 69% 

% of overnight return 28% 23% 22% 22% 22% 22% 22% 23% 24% 30% 

IMAX dummy 41% 49% 53% 56% 58% 60% 62% 65% 68% 71% 

OMAX dummy 20% 18% 20% 20% 21% 22% 23% 25% 28% 38% 
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Table 2: Returns of decile portfolios formed on different lottery proxies 

This table presents the average returns of decile portfolios and the return premia formed on each of the three lottery 

proxies of MAX, IMAX, and OMAX. For each month t, we sort individual stocks into deciles according to their 

values of MAX, IMAX, or OMAX identified in month t−1. For each decile portfolio, we calculate equally- and 

value-weighted returns in month t. We define the premium of the lottery anomaly as the difference in returns 

between the lowest and highest deciles. In addition to raw returns, we also obtain abnormal returns by regressing the 

raw return premia between long and short positions on each factor model, and we obtain the intercept as the 

abnormal return. We consider Fama and French’s (2015) five-factor model, a momentum-augmented six-factor 

model, a liquidity-augmented six-factor model, Hou et al.’s (2015) Q4 model, and Hou et al.’s (2021) Q5 model. 

Numbers in the parentheses are the t-statistics calculated using Newey and West’s (1987) robust standard errors. ***, 

**, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

MAX 

 

IMAX 

 

OMAX 

 

EW VW 

 

EW VW 

 

EW VW 

Low 1.139 *** 1.073 *** 

 

1.103 *** 1.104 *** 

 

0.874 *** 0.926 *** 

 

(6.63) 

 

(5.97) 

  

(6.29) 

 

(6.14) 

  

(4.67) 

 

(5.26) 

 2 1.171 *** 0.974 *** 

 

1.191 *** 1.032 *** 

 

0.974 *** 0.936 *** 

 

(5.23) 

 

(5.19) 

  

(5.41) 

 

(5.25) 

  

(4.20) 

 

(4.83) 

 3 1.144 *** 0.976 *** 

 

1.128 *** 0.903 *** 

 

1.005 *** 1.067 *** 

 

(4.72) 

 

(4.63) 

  

(4.69) 

 

(4.19) 

  

(3.87) 

 

(5.25) 

 4 1.102 *** 0.797 *** 

 

1.094 *** 0.879 *** 

 

1.009 *** 0.911 *** 

 

(4.19) 

 

(3.33) 

  

(4.14) 

 

(3.57) 

  

(3.75) 

 

(3.81) 

 5 1.017 *** 0.914 *** 

 

1.062 *** 0.877 *** 

 

0.871 *** 0.760 *** 

 

(3.57) 

 

(3.35) 

  

(3.77) 

 

(3.33) 

  

(2.95) 

 

(3.05) 

 6 0.853 *** 0.798 *** 

 

0.884 *** 0.786 ** 

 

0.906 *** 0.769 ** 

 

(2.80) 

 

(2.72) 

  

(2.90) 

 

(2.56) 

  

(2.85) 

 

(2.58) 

 7 0.759 ** 0.652 * 

 

0.754 ** 0.718 ** 

 

0.809 ** 0.818 ** 

 

(2.25) 

 

(1.96) 

  

(2.28) 

 

(2.07) 

  

(2.34) 

 

(2.55) 

 8 0.511 

 

0.587 

  

0.656 * 0.743 * 

 

0.740 ** 0.683 * 

 

(1.36) 

 

(1.47) 

  

(1.76) 

 

(1.86) 

  

(2.07) 

 

(1.89) 

 9 0.302 

 

0.436 

  

0.252 

 

0.419 

  

0.433 

 

0.498 

 

 

(0.72) 

 

(1.00) 

  

(0.60) 

 

(0.95) 

  

(1.11) 

 

(1.31) 

 High -0.279 

 

0.170 

  

-0.397 

 

-0.057 

  

0.095 

 

0.479 

 

 

(-0.56) 

 

(0.35) 

  

(-0.78) 

 

(-0.11) 

  

(0.22) 

 

(1.15) 

 Low–High 1.418 *** 0.903 ** 

 

1.500 *** 1.161 ** 

 

0.779 ** 0.447 

 

 

(3.34) 

 

(2.14) 

  

(3.45) 

 

(2.46) 

  

(2.22) 

 

(1.26) 

 FF5 alpha 1.334 *** 0.791 *** 

 

1.428 *** 1.070 *** 

 

0.593 *** 0.326 * 

 

(6.76) 

 

(3.63) 

  

(6.83) 

 

(4.25) 

  

(2.87) 

 

(1.66) 

 FF5+MOM alpha 1.210 *** 0.679 *** 

 

1.313 *** 0.939 *** 

 

0.442 ** 0.267 

 

 

(5.90) 

 

(2.81) 

  

(6.23) 

 

(3.38) 

  

(2.02) 

 

(1.28) 

 FF5+LIW alpha 1.351 *** 0.772 *** 

 

1.449 *** 1.071 *** 

 

0.651 *** 0.491 ** 

 

(6.69) 

 

(3.29) 

  

(6.79) 

 

(4.13) 

  

(3.16) 

 

(2.31) 

 Q4 alpha 1.032 *** 0.565 * 

 

1.135 *** 0.688 ** 

 

0.252 

 

0.195 

 

 

(3.93) 

 

(1.88) 

  

(4.14) 

 

(2.14) 

  

(1.05) 

 

(0.74) 

 Q5 alpha 0.922 *** 0.415 

  

0.992 *** 0.557 * 

 

0.162 

 

0.117 

 

 

(3.68) 

 

(1.42) 

  

(3.93) 

 

(1.87) 

  

(0.66) 

 

(0.47) 
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Table 3: Cross-sectional regressions 

This table presents the estimation results of the Fama-MacBeth (1973) cross-sectional regressions. For each month t, 

we perform the following cross-sectional regression: 

, 1, , 1 2, , 1 3, , 1 , , , 1 ,

1

,

J

i t t t i t t i t t i t j t i j t i t

j

R MAX IMAX OMAX CV        



           

where Ri,t is stock i’s return in month t; MAXi,t–1 , IMAXi,t–1, and OMAXi,t–1 are the maximum daily, intraday, and 

overnight returns in month t−1; CVi,j,t is the jth control variable. The control variables include firm size (SIZE), 

book-to-market (BM) ratio, gross profitability (GP), asset growth (AG), intermediate-term past return (PR12), 

short-term past return (REV), illiquidity (ILLIQ), and idiosyncratic volatility (IVOL). Once we obtain the 

coefficient estimates from the regression for each month t, we calculate the time-series averages of the coefficients 

from the regressions. In Panel A, we include lottery proxies only while in Panel B, we include lottery proxies and 

control variables simultaneously. Numbers in the parentheses are the t-statistics calculated using Newey and West’s 

(1987) robust standard errors. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6) Model (7) 
Panel A: Cross-sectional regressions without controls 

MAX -0.063 *** 

    

-0.008 

 

-0.079 *** 

  

-0.002 

 

 

(-4.28) 

     

(-0.94) 

 

(-5.03) 

   

(-0.14) 

 IMAX 

  

-0.099 *** 

  

-0.092 *** 

  

-0.098 *** -0.099 *** 

   

(-4.97) 

   

(-5.31) 

   

(-5.34) 

 

(-4.80) 

 OMAX 

    

-0.043 *** 

  

0.032 *** -0.002 

 

-0.003 

 

     

(-2.81) 

   

(3.08) 

 

(-0.18) 

 

(-0.20) 

 Panel B: Cross-sectional regressions with controls 

MAX 0.035 ** 

    

0.067 *** 0.027 

   

0.067 *** 

 

(2.13) 

     

(4.08) 

 

(1.52) 

   

(3.46) 

 IMAX 

  

-0.060 *** 

  

-0.076 *** 

  

-0.043 *** -0.073 *** 

   

(-4.26) 

   

(-5.38) 

   

(-2.76) 

 

(-4.27) 

 OMAX 

    

0.044 *** 

  

0.036 *** 0.033 *** 0.008 

 

     

(3.94) 

   

(3.06) 

 

(2.78) 

 

(0.55) 

 SIZE -0.009 

 

-0.009 

 

-0.004 

 

-0.023 

 

-0.006 

 

-0.008 

 

-0.021 

 

 

(-0.32) 

 

(-0.30) 

 

(-0.14) 

 

(-0.79) 

 

(-0.20) 

 

(-0.28) 

 

(-0.73) 

 BM 0.150 ** 0.146 ** 0.153 ** 0.138 * 0.151 ** 0.145 * 0.139 * 

 

(2.01) 

 

(1.97) 

 

(2.03) 

 

(1.88) 

 

(2.02) 

 

(1.96) 

 

(1.91) 

 GP 0.684 *** 0.663 *** 0.701 *** 0.667 *** 0.697 *** 0.682 *** 0.680 *** 

 

(4.26) 

 

(4.15) 

 

(4.36) 

 

(4.17) 

 

(4.34) 

 

(4.26) 

 

(4.23) 

 AG -0.363 ** -0.385 ** -0.385 ** -0.366 ** -0.372 ** -0.375 ** -0.365 ** 

 

(-2.32) 

 

(-2.48) 

 

(-2.46) 

 

(-2.37) 

 

(-2.40) 

 

(-2.43) 

 

(-2.37) 

 PR12 0.004 * 0.004 

 

0.004 

 

0.004 

 

0.004 

 

0.004 

 

0.004 

 

 

(1.65) 

 

(1.46) 

 

(1.58) 

 

(1.56) 

 

(1.62) 

 

(1.50) 

 

(1.54) 

 REV -0.019 *** -0.011 ** -0.017 *** -0.018 *** -0.020 *** -0.014 *** -0.019 *** 

 

(-3.72) 

 

(-2.34) 

 

(-3.74) 

 

(-3.44) 

 

(-3.87) 

 

(-2.79) 

 

(-3.55) 

 ILLIQ 0.123 

 

0.102 

 

0.065 

 

0.117 

 

0.075 

 

0.070 

 

0.099 

 

 

(0.74) 

 

(0.63) 

 

(0.41) 

 

(0.69) 

 

(0.45) 

 

(0.43) 

 

(0.57) 

 IVOL -0.335 *** -0.110 ** -0.293 *** -0.276 *** -0.354 *** -0.192 *** -0.287 *** 

 

(-4.26) 

 

(-2.18) 

 

(-4.59) 

 

(-3.62) 

 

(-4.55) 

 

(-3.35) 

 

(-3.93) 
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Table 4: Cross-sectional regressions by groups of the salience theory 

This table presents the estimation results of the Fama-MacBeth (1973) cross-sectional regressions separately for 

different groups sorted by the salience theory values. For each month t, we partition the sample into three subgroups 

according to each stock’s value of ST computed using daily return data in month t−1. Within each ST subgroup for 

each month t, we perform the following cross-sectional regression: 

, 1, , 1 2, , 1 3, , 1 , , , 1 ,

1

,

J

i t t t i t t i t t i t j t i j t i t

j

R MAX IMAX OMAX CV        



           

where Ri,t is stock i’s return in month t; MAXi,t–1 , IMAXi,t–1, and OMAXi,t–1 are the maximum daily, intraday, and 

overnight returns in month t−1; CVi,j,t is the jth control variable. The control variables include firm size (SIZE), 

book-to-market (BM) ratio, gross profitability (GP), asset growth (AG), intermediate-term past return (PR12), 

short-term past return (REV), illiquidity (ILLIQ), and idiosyncratic volatility (IVOL). Once we obtain the 

coefficient estimates from the regression for each month t, we calculate the time-series averages of the coefficients 

from the regressions for each ST subgroup. Numbers in the parentheses are the t-statistics calculated using Newey 

and West’s (1987) robust standard errors. ***, **, and * denote significance at the 1%, 5%, and 10% levels, 

respectively. 
 ST subgroup 

 

Low Medium High 

MAX -0.037 

 

0.005 

 

0.087 *** 

 

(-0.94) 

 

(0.11) 

 

(3.25) 

 IMAX -0.040 

 

-0.072 *** -0.069 *** 

 

(-1.43) 

 

(-3.14) 

 

(-3.39) 

 OMAX 0.032 

 

0.058 ** -0.004 

 

 

(1.20) 

 

(2.22) 

 

(-0.27) 

 SIZE -0.042 

 

-0.044 

 

0.014 

 

 

(-1.19) 

 

(-1.44) 

 

(0.40) 

 BM 0.108 

 

0.058 

 

0.188 ** 

 

(1.30) 

 

(0.80) 

 

(2.31) 

 GP 0.573 *** 0.418 ** 0.882 *** 

 

(2.69) 

 

(2.20) 

 

(4.47) 

 AG -0.767 *** -0.034 

 

-0.126 

 

 

(-3.18) 

 

(-0.16) 

 

(-0.56) 

 PR12 0.001 

 

0.005 * 0.007 ** 

 

(0.33) 

 

(1.70) 

 

(2.58) 

 REV -0.033 *** -0.035 *** -0.009 * 

 

(-3.77) 

 

(-4.61) 

 

(-1.70) 

 ILLIQ -0.061 

 

-0.546 

 

0.132 

 

 

(-0.17) 

 

(-1.27) 

 

(0.55) 

 IVOL -0.325 *** -0.167 

 

-0.332 ** 

 

(-4.39) 

 

(-1.43) 

 

(-2.47) 
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Table 5: Cross-sectional regressions by groups of abnormal daytime reversals 

This table presents the estimation results of the Fama-MacBeth (1973) cross-sectional regressions separately for 

different groups sorted by the values of abnormal daytime reversals. We consider abnormal positive daytime 

reversal (ABPR) and abnormal negative daytime reversal (ABNR). For each month t, we partition the sample into 

three subgroups according to each stock’s value of ABPR or ABNR computed using daily return data in month t−1. 

Within each ABPR or ABNR subgroup for each month t, we perform the following cross-sectional regression: 

, 1, , 1 2, , 1 3, , 1 , , , 1 ,

1

,

J

i t t t i t t i t t i t j t i j t i t

j

R MAX IMAX OMAX CV        



           

where Ri,t is stock i’s return in month t; MAXi,t–1 , IMAXi,t–1, and OMAXi,t–1 are the maximum daily, intraday, and 

overnight returns in month t−1; CVi,j,t is the jth control variable. The control variables include firm size (SIZE), 

book-to-market (BM) ratio, gross profitability (GP), asset growth (AG), intermediate-term past return (PR12), 

short-term past return (REV), illiquidity (ILLIQ), and idiosyncratic volatility (IVOL). Once we obtain the 

coefficient estimates from the regression for each month t, we calculate the time-series averages of the coefficients 

from the regressions for each ABPR or ABNR subgroup. Numbers in the parentheses are the t-statistics calculated 

using Newey and West’s (1987) robust standard errors. ***, **, and * denote significance at the 1%, 5%, and 10% 

levels, respectively. 

 

ABPR subgroup 

 

ABNR subgroup 

 

Low Medium High 

 

Low Medium High 

MAX 0.082 *** 0.069 ** 0.059 ** 

 

0.076 *** 0.043 

 

0.095 *** 

 

(2.76) 

 

(2.52) 

 

(2.28) 

  

(3.04) 

 

(1.55) 

 

(3.37) 

 IMAX -0.107 *** -0.048 * -0.094 *** 

 

-0.066 *** -0.081 *** -0.095 *** 

 

(-3.63) 

 

(-1.88) 

 

(-4.47) 

  

(-2.83) 

 

(-3.80) 

 

(-3.57) 

 OMAX -0.019 

 

0.025 

 

0.012 

  

0.001 

 

0.022 

 

-0.016 

 

 

(-0.78) 

 

(1.23) 

 

(0.62) 

  

(0.03) 

 

(1.16) 

 

(-0.62) 

 SIZE -0.036 

 

-0.060 * 0.005 

  

0.009 

 

-0.037 

 

-0.044 

 

 

(-1.02) 

 

(-1.87) 

 

(0.17) 

  

(0.26) 

 

(-1.12) 

 

(-1.37) 

 BM 0.158 * 0.095 

 

0.135 * 

 

0.132 * 0.167 ** 0.099 

 

 

(1.81) 

 

(1.23) 

 

(1.68) 

  

(1.66) 

 

(2.04) 

 

(1.16) 

 GP 0.790 *** 0.549 *** 0.588 *** 

 

0.784 *** 0.732 *** 0.453 ** 

 

(3.71) 

 

(3.04) 

 

(3.03) 

  

(3.50) 

 

(3.95) 

 

(2.43) 

 AG -0.440 ** -0.318 

 

-0.149 

  

-0.453 * -0.472 * -0.215 

 

 

(-2.11) 

 

(-1.34) 

 

(-0.59) 

  

(-1.90) 

 

(-1.88) 

 

(-1.00) 

 PR12 0.005 * 0.003 

 

0.005 * 

 

0.005 * 0.005 * 0.002 

 

 

(1.67) 

 

(1.03) 

 

(1.81) 

  

(1.95) 

 

(1.79) 

 

(0.78) 

 REV -0.018 *** -0.025 *** -0.013 ** 

 

-0.020 *** -0.014 ** -0.025 *** 

 

(-2.87) 

 

(-3.90) 

 

(-2.18) 

  

(-3.16) 

 

(-2.30) 

 

(-4.01) 

 ILLIQ 0.511 

 

-0.545 

 

0.478 

  

0.448 

 

-0.082 

 

-0.097 

 

 

(1.27) 

 

(-1.58) 

 

(0.91) 

  

(1.31) 

 

(-0.26) 

 

(-0.25) 

 IVOL -0.249 ** -0.357 *** -0.221 ** 

 

-0.290 *** -0.267 *** -0.262 ** 

 

(-2.48) 

 

(-4.35) 

 

(-2.46) 

  

(-3.52) 

 

(-3.03) 

 

(-2.40) 
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Table 6: Cross-sectional regressions of five-day MAX measures 

This table presents the estimation results of the Fama-MacBeth (1973) cross-sectional regressions by using the 5-day 

averaged lottery proxies as the main independent variables. For each month t, we perform the following 

cross-sectional regression: 

, 1, , 1 2, , 1 3, , 1 , , , 1 ,

1

(5) (5) (5) ,

J

i t t t i t t i t t i t j t i j t i t

j

R MAX IMAX OMAX CV        



           

where Ri,t is stock i’s return in month t; MAX(5)i,t–1 , IMAX(5)i,t–1, and OMAX(5)i,t–1 are the5-day average values of 

MAXi,t–1, IMAXi,t–1, and OMAXi,t–1; CVi,j,t is the jth control variable. The control variables include firm size (SIZE), 

book-to-market (BM) ratio, gross profitability (GP), asset growth (AG), intermediate-term past return (PR12), 

short-term past return (REV), illiquidity (ILLIQ), and idiosyncratic volatility (IVOL). Once we obtain the 

coefficient estimates from the regression for each month t, we calculate the time-series averages of the coefficients 

from the regressions. In Panel A, we include lottery proxies only while in Panel B, we include lottery proxies and 

control variables simultaneously. Numbers in the parentheses are the t-statistics calculated using Newey and West’s 

(1987) robust standard errors. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6) Model (7) 
Panel A: Cross-sectional regressions without controls 

MAX(5) -0.188 *** 

    

-0.058 * -0.230 *** 

  

-0.075 ** 

 

(-4.53) 

     

(-1.92) 

 

(-5.74) 

   

(-2.23) 

 IMAX(5) 

  

-0.232 *** 

  

-0.177 *** 

  

-0.235 *** -0.180 *** 

   

(-4.79) 

   

(-4.55) 

   

(-5.59) 

 

(-3.81) 

 OMAX(5) 

    

-0.148 *** 

  

0.092 *** 0.002 

 

0.038 

 

     

(-2.75) 

   

(2.74) 

 

(0.05) 

 

(0.95) 

 Panel B: Cross-sectional regressions with controls 

MAX(5) -0.186 ** 

    

-0.008 

 

-0.218 ** 

  

-0.040 

 

 

(-2.04) 

     

(-0.08) 

 

(-2.47) 

   

(-0.46) 

 IMAX(5) 

  

-0.207 *** 

  

-0.199 *** 

  

-0.197 *** -0.183 *** 

   

(-4.48) 

   

(-5.32) 

   

(-3.70) 

 

(-4.08) 

 OMAX(5) 

    

0.103 ** 

  

0.139 *** 0.046 

 

0.060 

 

     

(2.40) 

   

(3.56) 

 

(0.90) 

 

(1.28) 

 SIZE 0.003 

 

-0.019 

 

0.006 

 

-0.017 

 

0.014 

 

-0.012 

 

-0.007 

 

 

(0.09) 

 

(-0.65) 

 

(0.20) 

 

(-0.57) 

 

(0.47) 

 

(-0.43) 

 

(-0.26) 

 BM 0.134 * 0.128 * 0.158 ** 0.123 * 0.138 * 0.128 * 0.127 * 

 

(1.88) 

 

(1.77) 

 

(2.11) 

 

(1.75) 

 

(1.95) 

 

(1.81) 

 

(1.83) 

 GP 0.653 *** 0.667 *** 0.712 *** 0.662 *** 0.685 *** 0.682 *** 0.677 *** 

 

(4.09) 

 

(4.18) 

 

(4.43) 

 

(4.15) 

 

(4.28) 

 

(4.26) 

 

(4.22) 

 AG -0.340 ** -0.360 ** -0.371 ** -0.340 ** -0.330 ** -0.333 ** -0.326 ** 

 

(-2.27) 

 

(-2.37) 

 

(-2.35) 

 

(-2.27) 

 

(-2.20) 

 

(-2.18) 

 

(-2.17) 

 PR12 0.004 

 

0.004 

 

0.004 

 

0.004 

 

0.004 

 

0.003 

 

0.004 

 

 

(1.51) 

 

(1.42) 

 

(1.57) 

 

(1.51) 

 

(1.52) 

 

(1.40) 

 

(1.48) 

 REV -0.004 

 

-0.006 

 

-0.016 *** -0.006 

 

-0.004 

 

-0.007 

 

-0.006 

 

 

(-0.52) 

 

(-1.22) 

 

(-3.47) 

 

(-0.78) 

 

(-0.49) 

 

(-1.28) 

 

(-0.76) 

 ILLIQ 0.100 

 

0.083 

 

0.031 

 

0.061 

 

0.012 

 

0.039 

 

0.012 

 

 

(0.60) 

 

(0.52) 

 

(0.18) 

 

(0.36) 

 

(0.07) 

 

(0.22) 

 

(0.07) 

 IVOL 0.011 

 

-0.043 

 

-0.280 *** -0.023 

 

-0.022 

 

-0.072 

 

-0.028 

 

 

(0.14) 

 

(-1.05) 

 

(-5.11) 

 

(-0.30) 

 

(-0.29) 

 

(-1.62) 

 

(-0.38) 
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Table 7: Cross-sectional regressions of five-day MAX measures by different groups 

This table presents the estimation results of the Fama-MacBeth (1973) cross-sectional regressions by using the 5-day 

averaged lottery proxies as the main independent variables separately for different groups sorted by the values of the 

salience theory or abnormal daytime reversals. For each month t, we partition the sample into three subgroups 

according to each stock’s value of ST, ABPR, or ABNR computed using daily return data in month t−1. Within each 

ST, ABPR, or ABNR subgroup for each month t, we perform the following cross-sectional regression: 

, 1, , 1 2, , 1 3, , 1 , , , 1 ,

1

(5) (5) (5) ,

J

i t t t i t t i t t i t j t i j t i t

j

R MAX IMAX OMAX CV        



           

where Ri,t is stock i’s return in month t; MAX(5)i,t–1 , IMAX(5)i,t–1, and OMAX(5)i,t–1 are the5-day average values of 

MAXi,t–1, IMAXi,t–1, and OMAXi,t–1; CVi,j,t is the jth control variable. The control variables include firm size (SIZE), 

book-to-market (BM) ratio, gross profitability (GP), asset growth (AG), intermediate-term past return (PR12), 

short-term past return (REV), illiquidity (ILLIQ), and idiosyncratic volatility (IVOL). Once we obtain the 

coefficient estimates from the regression for each month t, we calculate the time-series averages of the coefficients 

from the regressions for each ST, ABPR, or ABNR subgroup. Panels A to C present the estimation results for 

groups formed by ST, ABPR, and ABNR, respectively. Numbers in the parentheses are the t-statistics calculated 

using Newey and West’s (1987) robust standard errors. ***, **, and * denote significance at the 1%, 5%, and 10% 

levels, respectively. 
 Groups formed by salience theory/abnormal daytime reversals 

 

Low Medium High 

Panel A: Stocks grouped by ST 

MAX(5) -0.140 

 

-0.181 

 

-0.020 

 

 

(-1.22) 

 

(-1.25) 

 

(-0.17) 

 IMAX(5) -0.085 

 

-0.123 ** -0.221 *** 

 

(-1.14) 

 

(-2.30) 

 

(-3.50) 

 OMAX(5) 0.103 

 

0.153 ** -0.012 

 

 

(1.35) 

 

(2.24) 

 

(-0.21) 

 Panel B: Stocks grouped by ABPR 

MAX(5) -0.089  0.020  -0.020  

 

(-0.83)  (0.20)  (-0.17)  

IMAX(5) -0.159 ** -0.171 *** -0.234 *** 

 

(-2.06)  (-2.99)  (-3.80)  

OMAX(5) 0.056  0.076  0.088  

 

(0.71)  (1.22)  (1.45)  

Panel C: Stocks grouped by ABNR 

MAX(5) -0.059  -0.124  0.101  

 

(-0.55)  (-0.99)  (0.73)  

IMAX(5) -0.190 *** -0.171 *** -0.196 *** 

 

(-2.78)  (-2.59)  (-3.49)  

OMAX(5) 0.024  0.107  0.040  

 

(0.31)  (1.61)  (0.60)  
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Table 8: Cross-sectional regressions of MAX considering the fraction of intraday returns 

This table presents the estimation results of the Fama-MacBeth (1973) cross-sectional regressions considering the 

impact of the fraction of intraday returns on MAX. For each month t, we perform the following cross-sectional 

regression: 

, 1, , 1 2, , 1 3, , 1 4, , 1 5, , 1 , 1i t t t i t t i t t i t t i t t i t i tR MAX IMAX OMAX FRAC MAX FRAC                       

, , , 1 ,

1

,

J

j t i j t i t

j

CV 



    

where Ri,t is stock i’s return in month t; MAXi,t–1 , IMAXi,t–1, and OMAXi,t–1 are the maximum daily, intraday, and 

overnight returns in month t−1; FRACi,t–1 is the fraction of stock i’s intraday return to daily return on the day of 

MAX occurrence in month t–1; CVi,j,t is the jth control variable. The control variables include firm size (SIZE), 

book-to-market (BM) ratio, gross profitability (GP), asset growth (AG), intermediate-term past return (PR12), 

short-term past return (REV), illiquidity (ILLIQ), and idiosyncratic volatility (IVOL). Once we obtain the 

coefficient estimates from the regression for each month t, we calculate the time-series averages of the coefficients 

from the regressions. Numbers in the parentheses are the t-statistics calculated using Newey and West’s (1987) 

robust standard errors. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

Model (1) Model (2) Model (3) Model (4) 
MAX -0.018 

 

0.049 ** 0.068 *** 0.085 *** 

 

(-1.52) 

 

(2.56) 

 

(3.98) 

 

(3.44) 

 IMAX 
 

 

-0.060 *** 
 

 

-0.039 ** 

 
 

 

(-2.84) 

 
 

 

(-2.13) 

 OMAX 
 

 

-0.050 ** 
 

 

-0.016 

 

 
 

 

(-2.47) 

 
 

 

(-0.87) 

 FRAC 0.055 

 

0.055 

 

0.031 

 

-0.028 

 

 

(0.57) 

 

(0.53) 

 

(0.29) 

 

(-0.25) 

 FRAC×MAX -0.081 *** -0.088 *** -0.062 *** -0.049 * 

 

(-4.64) 

 

(-3.26) 

 

(-3.66) 

 

(-1.91) 

 SIZE 

    

-0.015 

 

-0.018 

 

     

(-0.52) 

 

(-0.63) 

 BM 

    

0.142 * 0.139 * 

     

(1.92) 

 

(1.93) 

 GP 

    

0.663 *** 0.673 *** 

     

(4.16) 

 

(4.22) 

 AG 

    

-0.368 ** -0.364 ** 

     

(-2.38) 

 

(-2.35) 

 PR12 

    

0.004 

 

0.004 

 

     

(1.59) 

 

(1.53) 

 REV 

    

-0.019 *** -0.019 *** 

     

(-3.68) 

 

(-3.56) 

 ILLIQ 

    

0.141 

 

0.174 

 

     

(0.83) 

 

(0.99) 

 IVOL 

    

-0.323 *** -0.291 *** 

     

(-4.16) 

 

(-3.98) 
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Table 9: Cross-sectional regressions of MAX considering the fraction of intraday returns by 

different groups 

This table presents the estimation results of the Fama-MacBeth (1973) cross-sectional regressions considering the 

impact of the salience theory and the fraction of intraday returns on MAX separately for different groups sorted by 

the values of the salience theory or abnormal daytime reversals. For each month t, we partition the sample into three 

subgroups according to each stock’s value of ST, ABPR, or ABNR computed using daily return data in month t−1. 

Within each ST, ABPR, or ABNR subgroup for each month t, we perform the following cross-sectional regression: 

, 1, , 1 2, , 1 3, , 1 4, , 1 5, , 1 , 1i t t t i t t i t t i t t i t t i t i tR MAX IMAX OMAX FRAC MAX FRAC                       

, , , 1 ,

1

,

J

j t i j t i t

j

CV 



    

where Ri,t is stock i’s return in month t; MAXi,t–1 , IMAXi,t–1, and OMAXi,t–1 are the maximum daily, intraday, and 

overnight returns in month t−1; FRACi,t–1 is the fraction of stock i’s intraday return to daily return on the day of 

MAX occurrence in month t–1; CVi,j,t is the jth control variable. The control variables include firm size (SIZE), 

book-to-market (BM) ratio, gross profitability (GP), asset growth (AG), intermediate-term past return (PR12), 

short-term past return (REV), illiquidity (ILLIQ), and idiosyncratic volatility (IVOL). Once we obtain the 

coefficient estimates from the regression for each month t, we calculate the time-series averages of the coefficients 

from the regressions for each ST, ABPR, or ABNR subgroup. Panels A to C present the estimation results for 

groups formed by ST, ABPR, and ABNR, respectively. Numbers in the parentheses are the t-statistics calculated 

using Newey and West’s (1987) robust standard errors. ***, **, and * denote significance at the 1%, 5%, and 10% 

levels, respectively. 
 Groups formed by salience theory/abnormal daytime reversals 

 

Low Medium High 

Panel A: Stocks grouped by ST 

MAX -0.012 

 

0.013 

 

0.087 *** 

 

(-0.25) 

 

(0.24) 

 

(3.26) 

 FRAC 0.083 

 

0.001 

 

0.002 

 

 

(0.49) 

 

(0.00) 

 

(0.01) 

 FRAC×MAX -0.064 

 

-0.060 

 

-0.051 *** 

 

(-1.52) 

 

(-1.33) 

 

(-2.80) 

 Panel B: Stocks grouped by ABPR 

MAX 0.068 *** 0.050 ** 0.078 *** 

 

(2.80)  (1.99)  (3.29)  

FRAC -0.007  0.123  0.025  

 

(-0.05)  (0.92)  (0.19)  

FRAC×MAX -0.057 ** -0.073 *** -0.062 *** 

 

(-2.34)  (-3.00)  (-2.78)  

Panel C: Stocks grouped by ABNR 

MAX 0.077 *** 0.064 *** 0.056 ** 

 

(2.83)  (2.77)  (2.41)  

FRAC 0.258  -0.120  0.016  

 

(1.58)  (-0.87)  (0.12)  

FRAC×MAX -0.094 *** -0.024  -0.069 *** 

 

(-3.91)  (-1.00)  (-2.93)  

 


